Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Regul Toxicol Pharmacol ; 124: 104968, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062206

RESUMO

Quinacrine sterilization (QS) is a nonsurgical female method used by more than 175,000 women in over 50 countries. With FDA approval, QS is expected to be used by hundreds of millions of women. The negative international health consequences of the results of a 2-year rat study in 2010 by Cancel et al. in Regulatory Toxicology and Pharmacology (RTP) (56:156-165) are incalculable. S1C(R2) was ignored in this study, including the fundamental concept of maximum tolerated dose (MTD), which resulted in the use of massive doses (up to 35 times the MTD) which killed many of the rats and destroyed the uterus of survivors. The design of this rat study was built on the false assertion that this study mimics what happens in women. Cancel et al. (2010), concludes it "seems most likely" that genotoxicity was a major factor in the carcinogenicity observed, prompting the FDA to halt further research of QS. In RTP, McConnell et al. (2010), and Haseman et al. (2015), using the authors' data, definitively determined the carcinogenicity to be secondary to necrosis and chronic inflammation. Decisions made in the design, conduct, analysis, interpretation and reporting in this study lack scientific foundation. This paper explores these decisions.


Assuntos
Quinacrina/toxicidade , Projetos de Pesquisa/normas , Esterilização Reprodutiva/métodos , Testes de Toxicidade Crônica/normas , Animais , Confiabilidade dos Dados , Aprovação de Drogas , Feminino , Humanos , Dose Máxima Tolerável , Quinacrina/administração & dosagem , Ratos , Testes de Toxicidade Crônica/métodos , Estados Unidos , United States Food and Drug Administration
2.
Naunyn Schmiedebergs Arch Pharmacol ; 394(7): 1521-1528, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33735393

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is believed to be responsible for the control mechanisms of cellular defense response and master regulator of antioxidant system by adjustment of endogenous antioxidants, phase II detoxifying enzymes and transporters, so inhibition of Nrf2 could be considered molecule target to overcome drug resistance and cancer progression. By harnessing liposome as an advanced nanoparticles transporter, we formulated Quinacrine known as nrf2 inhibitor into nano-carrier, and sensitized A-549 lung tumor cells to Cisplatin. The aim of this work was to prepare liposome nano-carriers to enhance the bioavailability of Quinacrine and to improve passive targeting in A549 cells. Quinacrine formulation into liposome exposed a mean particle size of 80±5 nm in passive targeting and 110±3 after decoration with chitosan oligosaccharides (COS), respectively. The highest amount of cell death (p<0.05) occurred with the co-incubation of the A549 cells with new formulation and Cisplatin. Additionally, Quinacrine-loaded liposomes declined Nrf2 expression more than Quinacrine alone (p<0.05). Correspondingly, the expression of Nrf2 downstream genes, MRP1, Trx, and bcl2 decreased significantly. Taking all the data into consideration, liposomes containing Quinacrine could ameliorate the effectiveness of Cisplatin by raising the permeability of cancer cells to the abovementioned chemical treatment and might be then given as a candidate to boost the therapeutic protocols in cancer patients.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Lipossomos/administração & dosagem , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Nanopartículas/administração & dosagem , Quinacrina/administração & dosagem , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Fator 2 Relacionado a NF-E2/metabolismo
3.
Eur Rev Med Pharmacol Sci ; 25(1): 556-566, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506949

RESUMO

A novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a current outbreak of infection termed Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 is currently a global pandemic that may cause close to half a billion deaths around the world. Until now, there is no effective treatment for COVID-19. Quinacrine (Qx) has been used since the 1930s as preventive antimalarial compound. It is a recognized small molecule inhibitor of RNA virus replication, with known anti-prion activity, and identified as a potent Ebola virus inhibitor both in vitro and in vivo. Recently, Qx has showed anti-SARS-CoV-2 activity. Herein, we review the potential mechanisms associated with quinacrine as an antiviral compound.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Quinacrina/farmacologia , SARS-CoV-2 , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , COVID-19/imunologia , Linhagem Celular , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/imunologia , Humanos , Camundongos , Quinacrina/administração & dosagem , Quinacrina/efeitos adversos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
Clin Colorectal Cancer ; 20(1): e43-e52, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32972830

RESUMO

BACKGROUND: Quinacrine plus a fluoropyrimidine has in vivo efficacy against metastatic colorectal cancer (mCRC). This phase 1b trial evaluated the combination of quinacrine plus capecitabine in patients with treatment-refractory mCRC. PATIENTS AND METHODS: Using a modified Simon accelerated titration design, adults with treatment-refractory mCRC were treated with capecitabine 1000 mg/m2 twice daily for 14/21-day cycle, and escalating doses of quinacrine 100 mg daily, 100 mg twice daily, and 200 mg twice daily for 21 days. The primary endpoint was identifying the maximum tolerated dose, determining tolerability and safety. In an expansion cohort, it was overall response rate and time to tumor progression (TTP). RESULTS: Ten patients (median age of 60 years) were treated in phase 1b. The first 2 quinacrine dosing levels were well tolerated. Dose-limiting toxicities were seen in 3 patients treated with quinacrine 200 mg twice daily. Five additional patients tolerated quinacrine 100 mg twice daily without further dose-limiting toxicities, thus establishing the maximum tolerated dose. Seven additional expansion-cohort patients enrolled onto the study before quinacrine manufacturing ceased within the United States. Five patients experienced stable disease, 1 partial response, and 10 disease progression. Median TTP overall was 2.12 months and median overall survival 5.22 months for the 17 patients. CONCLUSION: Capecitabine and quinacrine can be safely administered at the maximum tolerated dose of capecitabine 1000 mg/m2 by mouth twice daily on days 1-14 and quinacrine 100 mg by mouth twice daily on days 1-21 of a 21-day cycle in mCRC patients. Although the expansion study was halted early, TTP was in line with other studies of refractory mCRC, suggesting activity of this regimen in heavily pretreated patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Capecitabina/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Quinacrina/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Capecitabina/efeitos adversos , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Quinacrina/efeitos adversos
5.
Mol Pharm ; 17(7): 2463-2472, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32407635

RESUMO

The presence of cancer stem cells (CSCs) in the tumor microenvironment is responsible for the development of chemoresistance and recurrence of cancer. Our previous investigation revealed the anticancer mechanism of quinacrine-based silver and gold hybrid nanoparticles (QAgNP and QAuNP) in oral cancer cells, but to avoid cancer recurrence, it is important to study the effect of these nanoparticles (NPs) on CSCs. Here, we developed an in vitro CSCs model using SCC-9 oral cancer cells and validated via FACS analysis. Then, 40-60% of cells were found to be CD44+/CD133+ and CD24-. QAuNP showed excellent anti-CSC growth potential against SCC-9-cancer stem like cells (IC50 = 0.4 µg/mL) with the down-regulation of representative CSC markers. Prolonged exposure of QAuNP induced the S-phase arrest and caused re-replication shown by the extended G2/M population and apoptosis to SCC-9-CSC like cells. Up-regulation of BAX, PARP cleavage, and simultaneous down-regulation of Bcl-xL in prolonged treatment to CSCs suggested that the majority of the cells have undergone apoptosis. QAuNP treatment also caused a loss in DNA repair in CSCs. Mostly, the base excision repair (BER) components (Fen-1, DNA ligase-1, Pol-ß, RPA, etc.) were significantly down-regulated after QAuNP treatment, which suggested its action against DNA repair machinery. The replication fork maintenance-related proteins, RAD 51 and BRCA-2, were also deregulated. Very surprisingly, depletion of WRN (an interacting partner for Pre-RC and Fen-1) and a significant increase in expression of fork-degrading nuclease MRE-11 in 96 h treated NPs were observed. Results suggest QAuNP treatment caused excessive DNA damage and re-replication mediated replication stress (RS) and stalling of the replication fork. Inhibition of BER components hinders the flap clearance activity of Fen-1, and it further caused RS and stopped DNA synthesis. Overall, QAuNP treatment led to irreparable replication fork movement, and the stalled replication fork might have degraded by MRE-11, which ultimately results in apoptosis and the death of the CSCs.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ouro/química , Nanopartículas Metálicas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinacrina/administração & dosagem , Prata/química , Neoplasias da Língua/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias da Língua/patologia , Microambiente Tumoral/efeitos dos fármacos
6.
Int J Pharm ; 578: 119097, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32032904

RESUMO

Quinacrine is an antimalarial drug that was repositioned for treatment of cancer. This is the first work to enhance quinacrine activity and minimize its associated hepatotoxicity via loading into bio-degradable, bio-renewable lignosulfonate nanoparticles. Particles were appraised for treatment of pancreatic cancer, one of the most life-threatening tumors with a five-year survival estimate. Optimum nanocomposites prepared by polyelectrolyte interaction exhibited a particle size of 138 nm, a negative surface charge (-28 mV) and a pH dependent release of the drug in an acidic environment. Ligands used for active targeting (lactoferrin and hyaluronic acid) were added to nanoparticles' surface via layer by layer coating technique. The highest anticancer activity on PANC-1 cells was demonstrated with dual active targeted particles (3-fold decrease in IC50) along with an increased ability to inhibit migration and invasion of pancreatic cancer cells. In vivo studies revealed that elaborated nanoparticles particles showed the highest tumor volume reduction with enhanced survival without any toxicity on major organs. In conclusion, the elaborated nanoparticles could be considered as a promising targeted nanotherapy for treatment of pancreatic cancer with higher efficacy& survival rate and lower organ toxicity.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Hialurônico/administração & dosagem , Lactoferrina/administração & dosagem , Lignina/análogos & derivados , Nanopartículas/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Quinacrina/administração & dosagem , Animais , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Humanos , Lignina/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Nanomedicina , Neoplasias Pancreáticas/patologia , Coelhos
7.
Clin Microbiol Infect ; 26(8): 1092.e1-1092.e6, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31901492

RESUMO

OBJECTIVE: To evaluate the effectiveness and tolerability of secnidazole combined with high-dose mebendazole for treatment of 5-nitroimidazole-resistant giardiasis. METHOD: Adults with microscopically verified Giardia intestinalis monoinfection attending a secondary level hospital in Matanzas City, Cuba were prospectively included in a cohort. A recently introduced treatment ladder consisting of metronidazole as first-line treatment, followed by secnidazole, tinidazole, secnidazole plus mebendazole and quinacrine as second-to fifth-line treatments, respectively, was used. Adverse events and treatment success were determined by questioning and microscopy on concentrated stool samples, respectively on days 3, 5 and 7 after the end of treatment. If G. intestinalis was detected on day 3, 5 or 7, then the infection was classified as refractory and no further microscopy was performed. RESULTS: A total of 456 individuals were included. Metronidazole, 500 mg three times daily for 5 days, cured 248/456 (54%) patients. A single 2-g secnidazole dose as second-line treatment cured 50/208 (24%) patients. A single 2-g tinidazole dose as third-line treatment cured 43/158 (27%) patients. Three rounds of 5-nitroimidazole therapy therefore cured 341/456 (75%) patients. Secnidazole plus mebendazole (200 mg every 8 hours for 3 days) cured 100/115 (87%) of nitroimidazole refractory infections. Quinacrine cured the remaining 15 patients. All treatments were well tolerated. CONCLUSIONS: 5-Nitroimidazole refractory giardiasis was common, indicating that an alternative first-line treatment may be needed. Retreatment of metronidazole refractory giardiasis with an alternative 5-nitroimidazole was suboptimal, indicating cross-resistance. Mebendazole plus secnidazole were well tolerated and effective for the treatment of 5-nitroimidazole refractory G. intestinalis infection in this setting.


Assuntos
Antiprotozoários/administração & dosagem , Giardíase/tratamento farmacológico , Mebendazol/administração & dosagem , Metronidazol/análogos & derivados , Quinacrina/administração & dosagem , Adulto , Idoso , Antiprotozoários/farmacologia , Cuba , Esquema de Medicação , Resistência a Medicamentos/efeitos dos fármacos , Quimioterapia Combinada , Fezes/parasitologia , Feminino , Giardia lamblia/efeitos dos fármacos , Giardia lamblia/isolamento & purificação , Humanos , Masculino , Mebendazol/farmacologia , Metronidazol/administração & dosagem , Metronidazol/farmacologia , Pessoa de Meia-Idade , Nitroimidazóis/uso terapêutico , Estudos Prospectivos , Quinacrina/farmacologia , Resultado do Tratamento , Adulto Jovem
8.
Int J Pharm ; 577: 118995, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31935471

RESUMO

Drug repurposing is on the rise as an atypical strategy for discovery of new molecules, involving use of pre-existing molecules for a different therapeutic application than the approved indication. Using this strategy, the current study aims to leverage effects of quinacrine (QA), a well-known anti-malarial drug, for treatment of non-small cell lung cancer (NSCLC). For respiratory diseases, designing a QA loaded inhalable delivery system has multiple advantages over invasive delivery. QA-loaded nanoparticles (NPs) were thus prepared using polyethyleneimine (PEI) as a cationic stabilizer. While the use of PEI provided cationic charge on the particles, it also mediated a burst release of QA and demonstrated potential particle toxicity. These concerns were circumvented by coating nanoparticles with bovine serum albumin (BSA), which retained the cationic charge, reduced NP toxicity and modulated QA release. Prepared nanoparticles were characterized for physicochemical properties along with their aerosolization potential. Therapeutic efficacy of the formulations was tested in different NSCLC cells. Mechanism of higher anti-proliferation was evaluated by studying cell cycle profile, apoptosis and molecular markers involved in the progression of lung cancer. BSA coated QA nanoparticles demonstrated good aerosolization potential with a mass median aerodynamic diameter of significantly less than 5 µm. Nanoparticles also demonstrated improved therapeutic efficacy against NSCLC cells in terms of low IC50 values, cell cycle arrest at G2/M phase and autophagy inhibition leading to increased apoptosis. BSA coated QA NPs also demonstrated enhanced therapeutic efficacy in a 3D cell culture model. The present study thus lays solid groundwork for pre-clinical and eventual clinical studies as a standalone therapy and in combination with existing chemotherapeutics.


Assuntos
Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Nanopartículas/química , Quinacrina/química , Soroalbumina Bovina/química , Administração por Inalação , Aerossóis/química , Aerossóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Tamanho da Partícula , Polietilenoimina/química , Quinacrina/administração & dosagem , Quinacrina/farmacologia
9.
Int J Biochem Cell Biol ; 119: 105682, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877386

RESUMO

Cancer stem cell like cells (CSCs) present a challenge in the management of cancers due to their involvement in the development of resistance against various chemotherapeutic agents. Over expression of ABCG2 transporter gene is one of the factors responsible for drug resistance in CSCs, which causes efflux of therapeutic drugs from these cells. The development of inhibitors against CSCs has not achieved any significant success, till date. In this work, we have evaluated the anti-proliferative activity of curcumin (Cur) and quinacrine (QC) against CSCs using in vitro model system. Cur and QC synergistically inhibited the proliferation, migration and invasion of CSCs enriched side population (SP) cells of cigarette smoke condensate induced breast epithelial transformed (MCF-10A-Tr) generated metastatic cells. Cur + QC combination increased the DNA damage and inhibited the DNA repair pathways in SP cells. Uptake of QC increased in Cur pre-treated SP cells and this combination inhibited the ABCG2 activity by the reduction of ATP hydrolysis in cells. In vitro DNA binding reconstitution system suggests that QC specifically binds to DNA and caused DNA damage inside the cell. Decreased level of ABCG2, representative cell survival and DNA repair proteins were noted after Cur + QC treatment in SP cells. The molecular docking studies were performed to examine the binding behaviour of these drugs with ABCG2, which showed that QC (-53.99 kcal/mol) and Cur (-45.90 kcal/mol) occupy a highly overlapping interaction domain. This suggested that in Cur pre-treated cells, the Cur occupied the ligand-binding site in ABCG2, thus making the ligand binding site unavailable for the QC. This causes an increase in the intracellular concentration of QC. The results indicate that Cur + QC combination causes CSCs death by increasing the concentration of QC in the cells and thus causing the DNA damage and inhibiting the DNA repair pathways through modulating the ABCG2 activity.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinacrina/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/administração & dosagem , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Sinergismo Farmacológico , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Quinacrina/administração & dosagem
10.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30642896

RESUMO

Clostridium perfringens enterotoxin (CPE) is a pore-forming toxin that causes the symptoms of common bacterial food poisoning and several non-foodborne human gastrointestinal diseases, including antibiotic-associated diarrhea and sporadic diarrhea. In some cases, CPE-mediated disease can be very severe or fatal due to the involvement of enterotoxemia. Therefore, the development of potential therapeutics against CPE action during enterotoxemia is warranted. Mepacrine, an acridine derivative drug with broad-spectrum effects on pores and channels in mammalian membranes, has been used to treat protozoal intestinal infections in human patients. A previous study showed that the presence of mepacrine inhibits CPE-induced pore formation and activity in enterocyte-like Caco-2 cells, reducing the cytotoxicity caused by this toxin in vitro Whether mepacrine is similarly protective against CPE action in vivo has not been tested. When the current study evaluated whether mepacrine protects against CPE-induced death and intestinal damage using a murine ligated intestinal loop model, mepacrine protected mice from the enterotoxemic lethality caused by CPE. This protection was accompanied by a reduction in the severity of intestinal lesions induced by the toxin. Mepacrine did not reduce CPE pore formation in the intestine but inhibited absorption of the toxin into the blood of some mice. Protection from enterotoxemic death correlated with the ability of this drug to reduce CPE-induced hyperpotassemia. These in vivo findings, coupled with previous in vitro studies, support mepacrine as a potential therapeutic against CPE-mediated enterotoxemic disease.


Assuntos
Antibacterianos/administração & dosagem , Infecções por Clostridium/tratamento farmacológico , Clostridium perfringens/efeitos dos fármacos , Enterotoxemia/tratamento farmacológico , Enterotoxinas/toxicidade , Quinacrina/administração & dosagem , Animais , Células CACO-2 , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Modelos Animais de Doenças , Enterotoxemia/microbiologia , Enterotoxemia/patologia , Enterotoxinas/metabolismo , Feminino , Humanos , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
11.
Pharmacol Biochem Behav ; 176: 57-62, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502360

RESUMO

A recent study demonstrated a key role of astroglial potassium channel Kir4.1 in the lateral habenula in depression. We investigated whether Kir4.1 protein is altered in the brain regions from susceptible mice after a chronic social defeat stress (CSDS). Furthermore, we compared the rapid and sustained antidepressant actions of Kir4.1 inhibitors (quinacrine and sertraline) and (R)-ketamine, (R)-enantiomer of rapid-acting antidepressant (R,S)-ketamine, in a CSDS model. Western blot analysis of Kir4.1 protein in the brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from CSDS susceptible mice and control mice (no CSDS) was performed. Quinacrine (15, or 30 mg/kg), sertraline (20 mg/kg), (R)-ketamine (10 mg/kg), or vehicle was administered intraperitoneally to CSDS susceptible mice. Subsequently, locomotion test, tail suspension test (TST), forced swimming test (FST) and 1% sucrose preference test (SPT) were performed. There were no changes of Kir4.1 protein in the all regions between two groups. (R)-ketamine showed rapid and long-lasting antidepressant actions in CSDS susceptible mice. In contrast, quinacrine and sertraline did not attenuate the increased immobility time of TST and FST in CSDS susceptible mice. Furthermore, quinacrine and sertraline did not improve decreased sucrose preference of SPT in CSDS susceptible mice. Unlike (R)-ketamine, quinacrine and sertraline did not show rapid and sustained antidepressant effects in a CSDS model. Therefore, it is unlikely that Kir4.1 channel inhibitors may have ketamine-like robust antidepressant actions although further study using selective and potent Kir4.1 channel inhibitors is needed.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Ketamina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Quinacrina/farmacologia , Sertralina/farmacologia , Animais , Antidepressivos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Ketamina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Quinacrina/administração & dosagem , Sertralina/administração & dosagem , Estresse Psicológico/metabolismo
12.
Leuk Res ; 63: 41-46, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29100024

RESUMO

We previously reported that the anti-malarial drug quinacrine has potential to be repositioned for treatment of acute myeloid leukemia (AML). As a next step towards clinical use, we assessed the efficacy of quinacrine in an AML-PS mouse model and investigated possible synergistic effects when combining quinacrine with nine other antileukemic compounds in two AML cell lines. Furthermore, we explored the in vivo activity of quinacrine in combination with the widely used AML agent cytarabine. The in vivo use of quinacrine (100mg/kg three times per week for two consecutive weeks) significantly suppressed circulating blast cells at days 30/31 and increased the median survival time (MST). The in vitro drug combination analysis yielded promising synergistic interactions when combining quinacrine with cytarabine, azacitidine and geldanamycin. Finally, combining quinacrine with cytarabine in vivo showed a significant decrease in circulating leukemic blast cells and increased MST compared to the effect of either drug used alone, thus supporting the findings from the in vitro combination experiments. Taken together, the repositioning potential of quinacrine for treatment of AML is reinforced by demonstrating significant in vivo activity and promising synergies when quinacrine is combined with different agents, including cytarabine, the hypomethylating agent azacitidine and HSP-90 inhibitor geldanamycin.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citarabina/administração & dosagem , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Quinacrina/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Toxicol Appl Pharmacol ; 330: 53-64, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720477

RESUMO

Presences of cancer stem cells (CSCs) in a bulk of cancer cells are responsible for tumor relapse, metastasis and drug resistance in oral cancer. Due to high drug efflux, DNA repair and self-renewable capacity of CSCs, the conventional chemotherapeutic agents are unable to kill the CSCs. CSCs utilizes Hedgehog (HH-GLI), WNT-ß catenin signalling for its growth and development. GSK3ß negatively regulates both the pathways in CSCs. Here, we have shown that a nano-formulated bioactive small molecule inhibitor Quinacrine (NQC) caused apoptosis in oral cancer stem cells (OCSCs; isolated from different oral cancer cells and oral cancer patient derived primary cells) by down regulating WNT-ß catenin and HH-GLI components through activation of GSK3ß. NQC activates GSK3ß in transcriptional and translational level and reduces ß catenin and GLI1 as well as downstream target gene of both the pathways Cyclin D1, C-Myc. The transcription factor activity of both the pathways was also reduced by NQC treatment. GSK3ß, ß catenin and GLI1 interacts with each other and NQC disrupts the co-localization and interaction between ß catenin and GLI1 in OCSCs in a dose dependent manner through activation of GSK3ß. Thus, data suggest NQC caused OCSCs death by disrupting the crosstalk between ß catenin and GLI1 by activation of GSK3ß.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinacrina/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , beta Catenina/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Humanos , Nanopartículas , Quinacrina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Proteína GLI1 em Dedos de Zinco/efeitos dos fármacos , beta Catenina/efeitos dos fármacos
14.
Gynecol Oncol ; 146(1): 187-195, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28545688

RESUMO

OBJECTIVE: Generate preclinical data on the effect of quinacrine (QC) in inhibiting tumorigenesis in endometrial cancer (EC) in vitro and explore its role as an adjunct to standard chemotherapy in an EC mouse model. METHODS: Five different EC cell lines (Ishikawa, Hec-1B, KLE, ARK-2, and SPEC-2) representing different histologies, grades of EC, sensitivity to cisplatin and p53 status were used for the in vitro studies. MTT and colony formation assays were used to examine QC's ability to inhibit cell viability in vitro. The Chou-Talalay methodology was used to examine synergism between QC and cisplatin, carboplatin or paclitaxel. A cisplatin-resistant EC subcutaneous mouse model (Hec-1B) was used to examine QC's role as maintenance therapy. RESULTS: QC exhibited strong synergism in vitro when combined with cisplatin, carboplatin or paclitaxel with the highest level of synergism in the most chemo-resistant cell line. Neither QC monotherapy nor carboplatin/paclitaxel significantly delayed tumor growth in xenografts. Combination treatment (QC plus carboplatin/paclitaxel) significantly augmented the antiproliferative ability of these agents and was associated with a 14-week survival prolongation compared to carboplatin/paclitaxel. Maintenance with QC resulted in further delay in tumor progression and survival prolongation compared to carboplatin/paclitaxel. QC was not associated with weight loss and the yellow skin discoloration noted during treatment was reversible upon discontinuation. CONCLUSIONS: QC exhibited significant antitumor activity against EC in vitro and was successful as maintenance therapy in chemo-resistant EC mouse xenografts. This preclinical data suggest that QC may be an important adjunct to standard chemotherapy for patients with chemo-resistant EC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quinacrina/farmacologia , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Sinergismo Farmacológico , Feminino , Camundongos , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Quinacrina/administração & dosagem , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biotechnol J ; 12(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28430399

RESUMO

Cyclin-dependent kinases constitute attractive pharmacological targets for cancer therapeutics, yet inhibitors in clinical trials target the ATP-binding pocket of the CDK and therefore suffer from limited selectivity and emergence of resistance. The more recent development of allosteric inhibitors targeting conformational plasticity of protein kinases offers promising perspectives for therapeutics. In particular tampering with T-loop dynamics of CDK2 kinase would provide a selective means of inhibiting this kinase, by preventing its conformational activation. To this aim we engineered a fluorescent biosensor that specifically reports on conformational changes of CDK2 activation loop and is insensitive to ATP or ATP-competitive inhibitors, which constitutes a highly sensitive probe for identification of selective T-loop modulators. This biosensor was successfully applied to screen a library of small chemical compounds leading to discovery of a family of quinacridine analogs, which potently inhibit cancer cell proliferation, and promote accumulation of cells in S phase and G2. These compounds bind CDK2/ Cyclin A, inhibit its kinase activity, compete with substrate binding, but not with ATP, and dock onto the T-loop of CDK2. The best compound also binds CDK4 and CDK4/Cyclin D1, but not CDK1. The strategy we describe opens new doors for the discovery of a new class of allosteric CDK inhibitors for cancer therapeutics.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/química , Neoplasias/tratamento farmacológico , Quinacrina/administração & dosagem , Trifosfato de Adenosina/química , Regulação Alostérica/efeitos dos fármacos , Técnicas Biossensoriais , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Humanos , Neoplasias/química , Neoplasias/patologia , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Quinacrina/química , Quinacrina/isolamento & purificação , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Relação Estrutura-Atividade
17.
Dis Aquat Organ ; 119(3): 259-63, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225210

RESUMO

The aim of this study was to assess the treatment potential of quinacrine and oxyclozanide against Microcotyle sebastis (Monogenea: Polyopisthocotylea) infection in cultured black rockfish Sebastes schlegeli. The oral administration of quinacrine led to a reduction in the mean abundance of M. sebastis infection in all quinacrine-treated groups, and the groups of fish administered quinacrine at 50, 100, and 200 mg kg(-1) for 3 consecutive days showed a parasite mean abundance that was 50 to 30% lower compared to that of the control group, suggesting that quinacrine has a therapeutic potential against M. sebastis. Although oxyclozanide showed a very high in vitro killing activity, in oral administration experiments, only the groups of fish administered 200 mg kg(-1) showed less than 50% mean abundance of M. sebastis compared to the control groups, suggesting that the absorption efficiency of orally administered oxyclozanide might be low in black rockfish and/or that M. sebastis might be less sensitive to orally ingested oxyclozanide. As praziquantel has been the sole therapeutic against M. sebastis infection in Korea for a long time, a broadening of available control measures is advisable in order to reduce the possible emergence of praziquantel-resistant M. sebastis. In our study, although quinacrine and oxyclozanide showed a therapeutic potential against M. sebastis, the treatment efficacy was not high enough to replace praziquantel. Thus, after investigations on the pathological effects and pharmacodynamics, use of quinacrine or oxyclozanide in combination with praziquantel may be considered as a way to prevent praziquantel resistance in M. sebastis.


Assuntos
Doenças dos Peixes/parasitologia , Oxiclozanida/uso terapêutico , Platelmintos/efeitos dos fármacos , Quinacrina/uso terapêutico , Infecções por Trematódeos/veterinária , Administração Oral , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/uso terapêutico , Aquicultura , Doenças dos Peixes/tratamento farmacológico , Brânquias/parasitologia , Oxiclozanida/administração & dosagem , Quinacrina/administração & dosagem , Infecções por Trematódeos/tratamento farmacológico
18.
Sci Rep ; 6: 20600, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26846872

RESUMO

To improve the pharmacokinetics and to study the anti-cervical cancer and anti-stem cells (CSCs) mechanism of Quinacrine (QC), a spherical nano particle of QC (i.e. NQC) was prepared and characterized. QC and NQC showed higher cytotoxicity in multiple cancer cells than the normal epithelial cells. NQC exhibited more toxicity in cervical cancer cells and its CSCs than QC. A dose-dependent decreased expression of Hedgehog-GLI (HH-GLI) components were noted in NQC treated HeLa cells and its CSCs. NQC increased the expressions of negatively regulated HH-GLI components (GSK3ß, PTEN) and caused apoptosis in CSCs. Reduction of GLI1 at mRNA and promoter level were noted after NQC exposure. The expressions of HH-GLI components, GLI1 promoter activity and apoptosis were unaltered in NQC treated GLI1-knockdown cells. In silico, cell based and in vitro reconstitution assay revealed that NQC inhibit HH-GLI cascade by binding to the consensus sequence (5'GACCACCCA3') of GLI1 in GLI-DNA complex through destabilizing DNA-GLI1 complex. NQC reduced the tumors size and proliferation marker Ki-67 in an in vivo xenograft mice model. Thus, NQC induced apoptosis in cancers through inhibition of HH-GLI cascade by GLI1. Detail interaction of QC-DNA-GLI complex can pave path for anticancer drug design.


Assuntos
Antineoplásicos/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinacrina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Proteína GLI1 em Dedos de Zinco/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Proteínas Hedgehog/metabolismo , Humanos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Células-Tronco Neoplásicas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Quinacrina/farmacologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Pharm ; 12(11): 4011-25, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26448277

RESUMO

A poly(lactic-co-glycolic acid) (PLGA)-based uniform (50-100 nm) hybrid nanoparticle (QAgNP) with positive zeta potential (0.52 ± 0.09 mV) was prepared by single emulsion solvent evaporation method with bioactive small molecule quinacrine (QC) in organic phase and silver (Ag) in aqueous phase. Physiochemical properties established it as a true hybrid nanoparticle and not a mixture of QC and Ag. Antitumor activity of QAgNP was evaluated by using various cancer cell lines including H-357 oral cancer cells and OSCC-cancer stem cell in an in vitro model system. QAgNP caused more cytotoxicity in cancer cells than normal epithelial cells by increasing BAX/BCL-XL, cleaved product PARP-1, and arresting the cells at S phase along with DNA damage. In addition, QAgNPs offered greater ability to kill the OSCC-CSCs compared to NQC and AgNPs. QAgNP offered anticancer action in OSCC-CSCs by inhibiting the base excision repair (BER) within the cells. Interestingly, alteration of BER components (Fen-1 and DNA polymerases (ß, δ, and ε) and unalteration of NHEJ (DNA-PKC) or HR (Rad-51) components was noted in QAgNP treated OSCC-CSC cells. Furthermore, QAgNP significantly reduced angiogenesis in comparison to physical mixture of NQC and AgNP in fertilized eggs. Thus, these hybrid nanoparticles caused apoptosis in OSCC-CSCs by inhibiting the angiogenesis and BER in cells.


Assuntos
Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Nanopartículas Metálicas/química , Neoplasias Bucais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Quinacrina/farmacologia , Prata/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Immunoblotting , Nanopartículas Metálicas/administração & dosagem , Neoplasias Bucais/irrigação sanguínea , Neoplasias Bucais/patologia , Quinacrina/administração & dosagem , Quinacrina/química , Prata/administração & dosagem , Células Tumorais Cultivadas
20.
J Biomed Nanotechnol ; 11(8): 1339-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295137

RESUMO

Recurrence of invasive breast cancer could arise from the residual cancer cells after comprehensive treatment. It is possible that residual invasive cancer cells are capable of forming highly patterned vasculogenic mimicry (VM) channels, leading to relapse and metastasis. In the present study, a new type of targeting epirubicin plus quinacrine liposomes was developed by modifying functional DSPE-PEG2000 with C(RGDfK), a cyclic peptide containing Arg-Gly-Asp. These liposomes could potentially eliminate invasive breast cancer and destroy VM channels. Evaluations were made in human invasive breast cancer cells and their xenografts in nude mice. The results showed that the targeting epirubicin plus quinacrine liposomes could enhance the accumulation and uptake of the drugs in cancer tissues, kill cancer cells directly, activate apoptotic enzymes, destroy the VM channels and downregulate the VM channel-forming marker molecules (EphA2, FAK, PI3K, MMP 9, MMP 14, VE-Cad and HIF-α), thereby exhibiting a strong overall anticancer efficacy. The targeting epirubicin plus quinacrine liposomes provided a promising strategy to treat invasive breast cancer and to prevent the relapse arising from VM channels after chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Lipossomos/química , Peptídeos Cíclicos/farmacocinética , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Epirubicina/administração & dosagem , Epirubicina/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Nanoconjugados/ultraestrutura , Invasividade Neoplásica , Tamanho da Partícula , Peptídeos Cíclicos/química , Quinacrina/administração & dosagem , Quinacrina/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...